肺栓塞预测模型

Pulmonary embolism prediction model

一项回顾性病例对照研究

A retrospective case-control study

wells评分

wells score

PO2

Caprini评分

Caprini score

BMI

Geneva评分

Geneva score

PCO2

心电图

ECG

  • 无 SIQIIITIII

    No SIQIIITIII

  • SIQIIITIII

    SIQIIITIII

下肢血管超声

Lower extremity vascular ultrasound

  • 无静脉血栓

    No vena thrombosis

  • 静脉血栓

    Vena thrombosis

Logit(P)

{{info}}

备注:我们运用Logistic逐步回归分析方法得到了肺栓塞预测诊断模型:Logit(P)=-0.89+1.51(wells评分)+1.27(心电图)-0.04(PO2)+1.52(下肢血管超声)-0.47(Caprini评分)+0.11(BMI)+0.24(Geneva评分)-0.05(PCO2)。肺栓塞预测模型约登指数为0.75, AUC值为0.93,灵敏度为 82.86%,特异度为 88.75%,当Logit(P)结果≥0.5时发生肺栓塞几率大,可进一步完善CTPA检查明确诊断。
Note: The predictive diagnostic model of pulmonary embolism was obtained by Logistic stepwise regression analysis: Logit(P)=-0.89+1.51(Wells score)+1.27 (ELECTROcardiogram) -0.04 (PO2)+ 1.52 (lower extremity vascular ultrasound) -0.47 (Caprini score)+ 0.11(BMI)+0.24(Geneva score)-0.05 (PCO2).The jorden index and AUC value of the prediction model of pulmonary embolism were 0.75, 0.93, 82.86% of sensitivity and 88.75% of specificity. When the Logit(P) result was ≥0.5, there was a high probability of pulmonary embolism, and CTPA examination could be further improved to confirm the diagnosis.
声明:版权归health.vip所有。关注我
Disclaimers: All rights reserved by Health. VIP. Add me